27 research outputs found

    Semiconducting nonperovskite ferroelectric oxynitride designed ab initio

    Full text link
    Recent discovery of HfO2-based and nitride-based ferroelectrics that are compatible to the semiconductor manufacturing process have revitalized the field of ferroelectric-based nanoelectronics. Guided by a simple design principle of charge compensation and density functional theory calculations, we discover HfO2-like mixed-anion materials, TaON and NbON, can crystallize in the polar Pca21 phase with a strong thermodynamic driving force to adopt anion ordering spontaneously. Both oxynitrides possess large remnant polarization, low switching barriers, and unconventional negative piezoelectric effect, making them promising piezoelectrics and ferroelectrics. Distinct from HfO2 that has a wide band gap, both TaON and NbON can absorb visible light and have high charge carrier mobilities, suitable for ferroelectric photovoltaic and photocatalytic applications. This new class of multifunctional nonperovskite oxynitride containing economical and environmentally benign elements offer a platform to design and optimize high-performing ferroelectric semiconductors for integrated systems

    Influence of body mass index and waist–hip ratio on male semen parameters in infertile men in the real world: a retrospective study

    Get PDF
    BackgroundIt is suggested that body mass index (BMI) can affect male semen quality; however, the results remain controversial. In addition, most studies have focused on the effect of obesity on semen quality. Evidence on the relationship of underweight or waist-hip ratio (WHR) with semen quality is rare. This study aimed to assess the association of BMI and WHR with semen quality.MethodsData, including BMI and WHR, was collected from 715.00 men who underwent a fertility evaluation. BMI (kg/m2) was categorized as <18.50 (underweight), 18.50–24.90 (normal), 25.00–27.90 (overweight), and ≥28.00 (obese) kg/m2 for analysis. WHR was categorized as <0.81 (normal) and ≥0.81 (high). Semen volume, sperm concentration, progressive motility, and total motile sperm count were detected by experienced clinical technicians.ResultsSpearman’s correlation showed that BMI was weakly associated with sperm progressive motility (r = 0.076, P < 0.05), while WHR showed no relationship with semen parameters. The azoospermia rate was significantly higher (33.33% vs. 2.10%, P < 0.001) and the sperm concentration was lower (P < 0.05) in the underweight group. The nonlinear correlation analysis showed that BMI was negatively associated with sperm concentration while BMI was more than 22.40 kg/m2 (P < 0.05), while WHR was negatively related to sperm progressive motility within 0.82 to 0.89 (P < 0.05). Furthermore, the multivariate logistic analysis showed that follicular stimulating hormone (FSH) was an independent risk factor for normal sperm concentration (odds ratio [OR]: 0.791, P = 0.001) and morphology (OR: 0.821, P = 0.002), BMI was an independent risk factor for normal sperm progressive motility, and testosterone was an independent risk factor for sperm morphology (OR: 0.908, P = 0.023).ConclusionBMI and WHR were significantly associated with semen parameters, while BMI was an independent risk factor for normal sperm progressive motility. Reproductive hormones, including FSH and testosterone, had a significant influence on sperm concentration and sperm morphology

    Understanding Plant-Microbe Interactions for Phytoremediation of Petroleum-Polluted Soil

    Get PDF
    Plant-microbe interactions are considered to be important processes determining the efficiency of phytoremediation of petroleum pollution, however relatively little is known about how these interactions are influenced by petroleum pollution. In this experimental study using a microcosm approach, we examined how plant ecophysiological traits, soil nutrients and microbial activities were influenced by petroleum pollution in Phragmites australis, a phytoremediating species. Generally, petroleum pollution reduced plant performance, especially at early stages of plant growth. Petroleum had negative effects on the net accumulation of inorganic nitrogen from its organic forms (net nitrogen mineralization (NNM)) most likely by decreasing the inorganic nitrogen available to the plants in petroleum-polluted soils. However, abundant dissolved organic nitrogen (DON) was found in petroleum-polluted soil. In order to overcome initial deficiency of inorganic nitrogen, plants by dint of high colonization of arbuscular mycorrhizal fungi might absorb some DON for their growth in petroleum-polluted soils. In addition, through using a real-time polymerase chain reaction method, we quantified hydrocarbon-degrading bacterial traits based on their catabolic genes (i.e. alkB (alkane monooxygenase), nah (naphthalene dioxygenase) and tol (xylene monooxygenase) genes). This enumeration of target genes suggests that different hydrocarbon-degrading bacteria experienced different dynamic changes during phytoremediation and a greater abundance of alkB was detected during vegetative growth stages. Because phytoremediation of different components of petroleum is performed by different hydrocarbon-degrading bacteria, plants’ ability of phytoremediating different components might therefore vary during the plant life cycle. Phytoremediation might be most effective during the vegetative growth stages as greater abundances of hydrocarbon-degrading bacteria containing alkB and tol genes were observed at these stages. The information provided by this study enhances our understanding of the effects of petroleum pollution on plant-microbe interactions and the roles of these interactions in the phytoremediation of petroleum-polluted soil

    Catalytic Effect of Hydrogen Bond on Oxhydryl Dehydrogenation in Methanol Steam Reforming on Ni(111)

    No full text
    Dehydrogenation of H3COH and H2O are key steps of methanol steam reforming on transition metal surfaces. Oxhydryl dehydrogenation reactions of HxCOH (x = 0–3) and OH on Ni (111) were investigated by DFT calculations with the OptB88-vdW functional. The transition states were searched by the climbing image nudged elastic band method and the dimer method. The activation energies for the dehydrogenation of individual HxCOH* are 68 to 91 kJ/mol, and reduced to 12–17 kJ/mol by neighboring OH*. Bader charge analysis showed the catalysis role of OH* can be attributed to the effect of hydrogen bond (H-bond) in maintaining the charge of oxhydryl H in the reaction path. The mechanism of H-bond catalysis was further demonstrated by the study of OH* and N* assisted dehydrogenation of OH*. Due to the universality of H-bond, the H-bond catalysis shown here, is of broad implication for studies of reaction kinetics

    Density Functional Theory Based Micro- and Macro-Kinetic Studies of Ni-Catalyzed Methanol Steam Reforming

    No full text
    The intrinsic mechanism of Ni-catalyzed methanol steam reforming (MSR) is examined by considering 54 elementary reaction steps involved in MSR over Ni(111). Density functional theory computations and transition state theory analyses are performed on the elementary reaction network. A microkinetic model is constructed by combining the quantum chemical results with a continuous stirring tank reactor model. MSR rates deduced from the microkinetic model agree with the available experimental data. The microkinetic model is used to identify the main reaction pathway, the rate determining step, and the coverages of surface species. An analytical expression of MSR rate is derived based on the dominant reaction pathway and the coverages of surface species. The analytical rate equation is easy to use and should be very helpful for the design and optimization of the operating conditions of MSR

    Study of the Two-Phase Flow Characteristics of a Damping Orifice in an Oleo-Pneumatic Shock Absorber

    No full text
    The oleo-pneumatic shock absorber involves a complex two-phase flow in the working process. In this paper, a simple oleo-pneumatic shock absorber model was established, and the volume-of-fluid (VOF) two-phase flow model was adopted to accurately simulate the distribution of the two-phase flow field in the shock absorber through the commercial software FLUENT 2020 R2. The accuracy of the simulation model was verified by the method of engineering damping force estimation, and the error of the numerical simulation results compared with the engineering estimation results was 7–8%. By numerical simulation, the influence of different orifice lengths and diameters on the maximum pressure, temperature, velocity and oil damping force inside the shock absorber was studied. The results showed that with the increase of the orifice length, the maximum pressure, flow rate and oil damping force in the shock absorber decreased. The temperature decreased first and then increased, but the overall effect was small. However, according to the oil volume fraction contour, the gas–liquid distribution in the shock absorber with an orifice larger than 15 mm was more chaotic. Increasing the diameter of the orifice had a great impact on the shock absorber. The maximum pressure, flow rate and damping force of the oil inside the shock absorber were sharply reduced, and the temperature continued to rise. These research results can provide reference for the optimization design of oleo-pneumatic shock absorbers

    COMPOSITION AND MICROSTRUCTURE OF MgAl2O4–W COMPOSITE OBTAINED BY ALUMINOTHERMIC REACTION UNDER COKE PROTECTION

    No full text
    MgAl2O4–W composite was synthesized by aluminothermic reducing method using Al, WO3, MgO and corundum as raw materials under coke protection. The effects of temperature, content of corundum on the synthesis of MgAl2O4–W composite and lattice parameter of spinel has been discussed. The differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis indicated that spinel began to form at 1058.2°C without corundum and shifted to 1120.7°C with 0.8 mol of corundum. The XRD analysis confirmed that spinel and tungsten are the main phases under coke protection. Alumina rich spinel with a high solubility of alumina was easily formed because of the high exothermic heats. The solubility limit of Al2O3 in spinel is reached when corundum content is 2.1 mol. Furthermore, the calculated lattice parameter of spinel increases with the increment of added corundum content and rising of temperature. Microstructural observation indicates that cubic tungsten located at grain boundaries of well crystallized spinel. Residual WO3 has needle like morphology

    Study of the Two-Phase Flow Characteristics of a Damping Orifice in an Oleo-Pneumatic Shock Absorber

    No full text
    The oleo-pneumatic shock absorber involves a complex two-phase flow in the working process. In this paper, a simple oleo-pneumatic shock absorber model was established, and the volume-of-fluid (VOF) two-phase flow model was adopted to accurately simulate the distribution of the two-phase flow field in the shock absorber through the commercial software FLUENT 2020 R2. The accuracy of the simulation model was verified by the method of engineering damping force estimation, and the error of the numerical simulation results compared with the engineering estimation results was 7–8%. By numerical simulation, the influence of different orifice lengths and diameters on the maximum pressure, temperature, velocity and oil damping force inside the shock absorber was studied. The results showed that with the increase of the orifice length, the maximum pressure, flow rate and oil damping force in the shock absorber decreased. The temperature decreased first and then increased, but the overall effect was small. However, according to the oil volume fraction contour, the gas–liquid distribution in the shock absorber with an orifice larger than 15 mm was more chaotic. Increasing the diameter of the orifice had a great impact on the shock absorber. The maximum pressure, flow rate and damping force of the oil inside the shock absorber were sharply reduced, and the temperature continued to rise. These research results can provide reference for the optimization design of oleo-pneumatic shock absorbers

    Design localized high concentration electrolytes via donor number and solubility

    No full text
    The salt-concentrated electrolytes offer superior properties beyond conventional dilute electrolytes yet suffer from high cost and viscosity that hinder their practical applications. A key strategy to address this challenge is to introduce a secondary solvent as a diluent that reduces the salt content while maintaining the local structure of salt-concentrated electrolytes, giving rise to localized high concentration electrolytes (LHCEs). Through a thorough investigation involving ~700 samples, we find that, the dielectric constant of solvent, a widely used parameter for electrolyte design, does not serve as a useful screening criterion for diluents; instead, donor number (DN) is an effective design parameter to achieve LHCE structure, i.e., the primary solvent must have DN > 10 and the diluent must have DN < 10. Correlating DN with solvent solubility leads to a simpler screening rule: Li-salt-insoluble solvents are diluents while Li-salt-soluble solvents become co-solvents. Both DN- and solubility-based design principles can be understood in an atomistic model of LHCE and are applicable to other electrolyte systems
    corecore